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Game theory provides a mathematical framework to model strategic interactions

between multiple parties, revealing deep insights into competitive and cooperative

scenarios alike. Core to game theory (and economics in general) is the premise of

rationality of all agents involved. In relation to humans, an ideal agent that optimally

processes information, incurs no computational costs, avoids errors, exhibits no biases,

and overall acts perfectly with respect to their goals, is often referred to as homo

economicus. Parkes and Wellman (2015) astutely observed that Artificial Intelligence

(AI) agents could be a better fit to these ideals, and coined a termmachina economicus

as a synthetic antipode to the perfectly rational human agent.

Of course, neither species exists.1 While humans deviate from the rationality

premise in an uncountable number of ways, modern generative AI models are known

to fail on trivial problems (like counting R’s in ‘Strawberry’), hallucinate (Zhang

et al., 2023; Huang et al., 2023), and even exhibit the same cognitive biases as humans

(Schramowski et al., 2022; Acerbi and Stubbersfield, 2023). Still, game theory has

long provided valuable models of human behavior, making its extension to AI a

natural progression. The potential for synergies is therefore immense.

As AI becomes increasingly integrated in all facets of society, it is imperative to

develop methods tailored for analyzing, understanding, and guiding interactions of

AI agents, especially in the presence of distinct and potentially conflicting incentives.

Game theory and economics offer a rich array of tools that can be adapted for

this purpose (Conitzer, 2019; Hadfield-Menell and Hadfield, 2019), as has already

been demonstrated in such diverse areas as classification (Ghalme et al., 2021),

recommender systems (Bahar et al., 2020), multi-agent reinforcement learning (Leibo

et al., 2017), and even large language models (Duetting et al., 2024).

The reverse direction is no less exciting: machine learning opens up new avenues

for tackling game-theoretic problems that were previously infeasible. One such

advancement is the emerging field of differentiable economics (Dütting et al., 2024),

which employs deep learning techniques in areas like auction design (Dütting et al.,

2019; Curry et al., 2023) and contract design (Wang et al., 2024).

This dissertation showcases examples from both directions, demonstrating the

reciprocal enrichment of machine learning and game theory.

1As of the time of writing, singularity has yet to occur.
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Relevance and Significance

My first study advances the field of automated design of revenue-maximizing

auctions through deep learning. The classic approach vastly employed in the literature

is to derive analytic solutions by applying pen-and-paper theoretic analysis to subsets

of problems or even particular problem instances (Myerson, 1981; Manelli and

Vincent, 2006; Pavlov, 2011; Giannakopoulos and Koutsoupias, 2014; Daskalakis

et al., 2015; Yao, 2017; Haghpanah and Hartline, 2021). This involves narrowing

down the problem space through specifying auction parameters, such as the number

of items being sold, the number of participants, and/or the distributions of valuations

of each participant over each item bundle. Besides the scrutiny required to analyze

each particular setting, as well as the unrealistic requirement of access to private

information, this approach becomes infeasible even in seemingly innocent settings

involving only two participants and two items.

As an alternative, automated auction design (Conitzer and Sandholm, 2002, 2003,

2004) takes a computational perspective and employs data-driven methods in order

to approximate optimal solutions in any setting. A breakthrough in this field is

the celebrated RegretNet framework (Dütting et al., 2019), which parameterizes

the auction mechanism as a neural network. RegretNet takes the agents’ bids for

all items as input, which it processes through a multi-layered perceptron to output

probabilistic item allocations between participants, as well as payments for each

participant. It is trained using a nuanced loss function that reflects a mixture of

two objectives: revenue (maximize the total of payments) and bidder truthfulness

(minimize regret, a quantitative measure of participants’ incentives to misreport their

bids).

I build upon RegretNet by introducing two independent improvements. Firstly,

I present RegretFormer, a neural architecture leveraging attention layers, which

offers better performance and generalization capabilities than the prior alternatives.

Secondly, I propose a novel loss function optimized through dual gradient descent,

simplifying hyperparameter tuning and providing a clear, interpretable mechanism to

balance the trade-off between the two objectives. Both improvements are validated

through an extensive and intricate empirical study that goes beyond the standard

comparison of performance metrics. Overall, this work presents a new state-of-the-art

approach to automated auction design.
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In my second study, I critically examine the prevalent assumption in Multi-

Agent Reinforcement Learning (MARL) that equates the cooperation of self-interested

agents with social welfare maximization. The dominant view on the problem of

cooperation is purely computational, allowing unbounded intervention into the agents’

objectives, e.g. by shaping rewards (Peysakhovich and Lerer, 2018a,b; Hughes et al.,

2018; Jaques et al., 2019; Wang et al., 2019; Eccles et al., 2019; Jiang and Lu, 2019;

Durugkar et al., 2020; Yang et al., 2020; Zimmer et al., 2021; Phan et al., 2022),

or private information, e.g. by sharing parameters (Gupta et al., 2017). Given

the complexity of temporally and spatially extended mixed-motive environments

typically studied through MARL (and formalized as Markov games, Leibo et al.

(2017)), this conventional approach is convenient in simplifying both training and

validation. However, it overlooks the importance of respecting agents’ individuality

and susceptibility to exploitation by selfish actors. Challenging this norm, I argue

that cooperation should emerge from the strategic decision-making of rational agents

as a socially beneficial equilibrium, robust against deviations for personal gains.

Inspired by advances in game theory (Monderer and Tennenholtz, 2009), I

propose using mediators as an implementation of this refined concept of cooperation.

Mediators are benevolent entities that may act on behalf of the agents who consent

to the mediation. Crucially, if an agent does not find mediation acceptable, it may

choose to act in the shared environment itself. However, in this case, the mediator

will not consider this agent’s welfare when acting for other agents (who did agree to

the mediation). This complex interplay requires the mediator to carefully balance all

agents’ incentives and guide them towards mutually beneficial equilibria implemented

through unanimous mediation. To train the mediator and the agents, I parameterize

both parties as neural networks, formulate their interaction as an optimization

problem constrained by agents’ incentives, and solve it using the policy gradient.

I demonstrate the effectiveness of this strategy in achieving cooperative equilibria

without compromising individual agency in classic social dilemmas and public good

games, as well as their sequential modifications with analytically intractable state

spaces. This novel methodology opens new avenues for creating more resilient and

equitable agent interactions in complex mixed-motive environments.

Finally, my third study contributes to the field of personalized ML, which
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concerns tailoring a model’s decisions to individuals’ unique characteristics and prefer-

ences (den Hengst et al., 2020). Specifically, I focus on personalization opportunities

in high-stakes domains like healthcare and autonomous driving. In these domains,

the deployment of any automated solution necessitates a rigorous regulatory approval

process (Breton et al., 2020), making personalization to each user infeasible. To

address this, I propose a framework coined represented Markov Decision Processes

(r-MDPs), which is designed to strike a delicate balance between the need for person-

alization and the regulatory constraints. This framework models a scenario where a

population of users, each with distinct preferences, may choose from a limited set

of representative policies to act in a single-agent MDP on their behalf. The task of

the designer then comprises two interdependent aspects: train the representative

policies (the computational aspect) and match each user to a policy such that the

overall social welfare is maximized (the game-theoretic aspect). Once the policies

are manufactured in a simulator, they can be submitted for approval by regulatory

entities, and finally deployed in the real world.

Delving deeper into the problem, I recognize the intractability of directly solving

r-MDPs due to the exponential complexity introduced by the need to select the most

appropriate policies for each user from a constrained set. To address this, I draw

inspiration from classical clustering algorithms, such as K-means and Expectation-

Maximization (MacQueen, 1967; Dempster et al., 1977; Lloyd, 1982), formulating

two deep reinforcement learning algorithms that iteratively refine policy assignments

and optimize the policies. These algorithms are supported by robust theoretical

underpinnings: each iteration, they monotonically improve, and thus eventually

converge to local maxima of social welfare.

The empirical investigations span across diverse simulated environments, from toy

but demonstrative Resource Gathering (Barrett and Narayanan, 2008) to complex

control tasks in MuJoCo (Todorov et al., 2012), demonstrating the versatility and

effectiveness of the algorithms in delivering personalized policies under stringent

budget constraints. These results not only validate the practicality of my approach

in offering meaningful personalization within regulated domains but also illuminate

the path for future explorations into extending these methodologies to real-world

applications, further bridging the gap between the theoretical ideals of machine

learning and the pragmatic demands of regulatory compliance.
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Research Objectives

1. Advance the frontiers of automated auction design through deep learning via

the use of self-attention layers.

2. Showcase a game-theoretic perspective on cooperation in mixed-motive Marko-

vian environments through the use of mediators.

3. Propose a compromise approach to personalized RL tailored for domains where

deployment of distinct policies is costly.

Key Results

Based on the studies described above, I formulate the following key results to be

defended:

1. The proposed RegretFormer architecture based on self-attention layers is the

new state-of-the-art in the automated auction design. Furthermore, the pro-

posed loss function modification based on dual gradient descent is less sensitive

to hyperparameters and unambiguously controls the revenue-regret trade-off.

2. Mediators can be applied in mixed-motive MARL to create new socially benefi-

cial equilibria. These equilibria can be identified with my algorithm by applying

policy gradient to a constrained optimization problem that I specified.

3. Meaningful personalization of ML models to a population of users can be

achieved with only a handful of solutions. In the context of RL, the policies

representing these solutions can be trained with my algorithms that combine

the high-level structure of K-means and EM clustering with policy optimization

through policy gradient.

Personal contribution

These results were achieved in collaboration with experts in the field and bright

students. However, in all studies, I was a core contributor, as evidenced by my first

authorship in all three publications that constitute this dissertation.

The first study I did with a team of peers. I led the project and actively con-

tributed to formulating research directions and hypotheses, as well as to implementing
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algorithmic developments and experiments. The core contributions of the study –

the state-of-the-art architecture and the improved loss function – are based on my

ideas. I actively contributed to writing the paper.

I worked on the second study with students. I led this project, formulating

the research direction of applying mediators in MARL, deriving a constrained

optimization problem, proposing to solve it using policy gradient, and designing

experiments. The students handled the codebase, implementing the algorithm and

most of the experiments based on my directions and ideas. The paper was written

entirely by me.

The third study was done in collaboration with an academic expert in the fields

of ML and game theory, who formulated the practical problem of personalization

in high-stakes domains and proposed a clustering-inspired RL solution. I took the

research from there, proposing a modified version of the algorithm (both of which

made it into the publication), designing experiments, and implementing the codebase.

The paper was mostly written by me, barring part of the introduction.

Publications and Approbation of Research

I have a total of seven publications in proceedings of international peer-reviewed

conferences. Three of these publications constitute this dissertation.

First-tier publications

1. Ivanov, D., Safiulin, I., Filippov, I., & Balabaeva, K. (2022). Optimal-er

auctions through attention. In Advances in Neural Information Processing

Systems (NeurIPS), Vol. 35, pp. 34734-34747.

2. Ivanov, D., Zisman, I., & Chernyshev, K. (2023). Mediated Multi-Agent

Reinforcement Learning. In Proceedings of the 2023 International Conference

on Autonomous Agents and Multiagent Systems (AAMAS), Vol. 22, pp. 49-57.

3. Ivanov, D., & Ben-Porat, O. (2024). Personalized Reinforcement Learning

with a Budget of Policies. In Proceedings of the AAAI Conference on Artificial

Intelligence, Vol. 38, pp. 12735-12743.
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Reports at conferences and seminars

1. Poster Presentation at the 36th Conference on Neural Information Processing

Systems (NeurIPS), December 2022, New Orleans, USA (virtual). Optimal-er

auctions through attention.

2. Poster Presentation at the 22nd International Conference on Autonomous

Agents and Multiagent Systems (AAMAS), June 2023, London, UK. Mediated

Multi-Agent Reinforcement Learning.

3. Presentation at an internal research seminar in DeepMind, June 2023, London,

UK. Mediated Multi-Agent Reinforcement Learning.

4. Pre-recorded presentation at the 38th AAAI Conference on Artificial Intelli-

gence, February 2024, Vancouver, Canada. Personalized Reinforcement Learn-

ing with a Budget of Policies.

Content of Works

Optimal-er Auctions through Attention

Auction Design

In this part of my thesis, I examine auction mechanisms where a group of bidders,

each denoted by N = 1, ..., n, express their interests in a collection of items, labeled

M = 1, ...,m, through valuation functions vi. These functions represent how each

bidder evaluates the items, with a key assumption being the additivity of valuations:

the total value a bidder assigns to a set of items is the sum of the values they assign

to each individual item.

The core of this study revolves around understanding how bidders, each with their

valuation functions drawn from specific distributions, interact within the auction

framework. An auctioneer, equipped with a sample of past valuation profiles, attempts

to design an optimal auction, yet is challenged by the lack of direct knowledge about

the bidders’ true valuations or their distributions.

The formulation of the auction includes rules for item allocation between partici-

pants and payments of each participant, striving for mechanisms where bidders are
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incentivized to bid their true valuations – a concept known as dominant strategy

incentive compatibility (DSIC). Additionally, the auction aims to be ex-post individ-

ually rational (IR), ensuring that bidders do not regret their participation regardless

of the outcome.

The task of designing optimal auctions, particularly in settings with multiple

items, is treated as an optimization problem. The objective is to maximize expected

revenue under DSIC and IR constraints. While the problem is well-understood

for single-item auctions, extending the principles to multi-item auctions introduces

significant complexity without straightforward solutions.

RegretNet

Building on the innovative work of RegretNet (Dütting et al., 2019), my thesis

explores advancements in the realm of optimal auction design through deep learning.

The core of RegretNet is its dual-network architecture, comprising an allocation

network and a payment network. These networks function by processing a structured

input – a bid matrix representing the bids of all participants for all items – through

multiple fully connected layers to produce meaningful outputs. Specifically, the

allocation network determines the probabilities of item allocation among bidders,

translating bid matrices into allocation probabilities. Meanwhile, the payment

network calculates the payments each bidder must make, again based on the bid

matrix, determining the portion of a bidder’s expected utility to be transferred to

the auctioneer.

A novel aspect of RegretNet is its optimization objective. The architecture is

designed to maximize revenue subject to the DSIC constraint. This constraint is

operationalized through the concept of ex-post regret, which measures a surplus of

utility a bidder would gain by optimally deviating from their true valuation in their

bid. RegretNet aims to minimize this regret to zero, ensuring that bidders have no

incentive to misreport their valuations. The optimization process is facilitated by

the augmented Lagrangian method, which balances the two conflicting objectives of

revenue maximization and regret minimization.

My thesis builds upon this foundation, aiming to refine and extend the capabilities

of deep learning models in the complex landscape of auction theory.
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Figure 1: RegretFormer

My Modifications of RegretNet

I introduce two significant advancements to the RegretNet framework for optimal

auction design: the RegretFormer architecture based on self-attention layers and an

alternative constrained objective for a more tractable loss function.

On the one hand, the RegretNet’s architecture, while pioneering, faces challenges

related to the sensitivity of auction outcomes to the order of items and participants

in the bid matrix, its limitation to a constant number of participants and items,

and the expressiveness of its fully connected layers. These issues hinder its practical

applicability and ability to generalize across different auction settings.

To overcome these limitations, I propose RegretFormer, a novel architecture that

incorporates attention layers. The architecture is illustrated in Figure 1. Specifically,

the self-attention layers are applied to a feature map produced from the bid matrix

both item-wise and participant-wise. The outputs from these self-attention layers are

combined via a fully connected layer, and this process can be repeated multiple times.

The final step involves processing these outputs to produce the allocation matrix

and payment vector. This design ensures that the architecture remains agnostic to

the order of bids and enables its applicability to auctions with varying numbers of

items and participants. Furthermore, the expressivity of attention layers improves

performance on large problems.

On the other hand, RegretNet’s original training procedure relies heavily on

the precise tuning of hyperparameters to manage the trade-off between its dual

objectives. This process is not only cumbersome but also fraught with the potential

for performance degradation if the parameters are not optimally set (Rahme et al.,

2021b).
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Table 1: Architecture comparison

Rmax setting
RegretNet EquivariantNet RegretFormer

revenue regret revenue regret revenue regret

10−3 1x2 0.572 0.0007 0.586 0.00065 0.571 0.00075

2x2 0.889 0.00055 0.878 0.0008 0.908 0.00054

2x3 1.317 0.00102 1.365 0.00084 1.416 0.00089

2x5 2.339 0.00142 2.437 0.00146 2.453 0.00102

3x10 5.59 0.00204 5.744 0.00167 6.121 0.00179

10−4 1x2 0.551 0.00007 0.548 0.00013 0.556 0.00014

2x2 0.825 0.00005 0.75 0.00005 0.861 0.00006

2x3 1.249 0.00007 1.226 0.0001 1.327 0.00011

2x5 2.121 0.00013 2.168 0.00017 2.339 0.00015

3x10 5.02 0.00062 5.12 0.00025 5.745 0.00022

To overcome these challenges, I propose a simplified and more intuitive framework

that prioritizes revenue maximization within a predefined regret budget. This

new objective is formalized as a relaxed version of the constrained optimization

problem, aiming to minimize the average regret across all bids without exceeding a

specified maximum threshold. Furthermore, this alternative formulation introduces

an automatic adjustment mechanism for the Lagrange multiplier through dual

gradient descent.

This revised approach presents two significant advantages. Firstly, it eliminates

the need to balance conflicting objectives through several hyperparameters, sim-

plifying hyperparameter tuning. Secondly, the explicit setting of a regret budget

makes the design process more straightforward and less sensitive to hyperparameter

variations. Empirically, this method has proven to be robust across various settings,

requiring minimal adjustments to the regret budget parameter.

Through these modifications, I address some of the limitations of the original

RegretNet, offering a clearer, more efficient path to optimal auction design.
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Table 2: Ratio of the estimated regret to the regret budget; it should be close to 1

Rmax setting
RegretNet EquivariantNet RegretFormer

train valid train valid train valid

10−3 1x2 1.12 1.22 1.04 1.11 1.01 1.31

2x2 0.97 1.24 1.41 1.82 0.89 1.19

2x3 1.07 1.55 1.11 1.23 1.02 1.26

2x5 0.94 1.21 1.11 1.2 0.8 0.83

3x10 0.89 1.09 0.9 0.87 1.03 0.88

10−4 1x2 0.94 1.27 0.92 2.37 1.31 2.52

2x2 0.95 1.94 1.73 1.33 0.93 1.39

2x3 1.52 1.12 1.57 1.63 1.6 1.66

2x5 1.04 1.23 1.02 1.57 0.95 1.28

3x10 0.9 3.71 1.05 1.46 0.88 1.15

Experiments

I conduct a series of experiments to evaluate the effectiveness of RegretFormer in

comparison to RegretNet and EquivariantNet (Rahme et al., 2021a) across various

auction settings, as well as the effectiveness of the loss function modification at

controlling the revenue-regret trade-off. An in-depth comparison is provided in the

main body of the thesis.

In Table 1, I report experiments differing only in the number of participants (n)

and items (m), represented as n×m. Valuations of all participants for all items are

independently drawn from the uniform distribution U [0, 1] The experiments span five

distinct setups: 1×2, 2×2, 2×3, 2×5, and 3×10, with the 1×2 setting referencing

the well-analyzed Manelli-Vincent auction, which has a known optimal revenue of

0.55. For the remaining configurations, optimal revenues remain unidentified.

The empirical results underscore RegretFormer’s superior performance in generat-

ing higher revenue across all setups except the simplest 1× 2, where the performance

gap between the models is negligible. This gap widens significantly in more complex

settings, suggesting that while the permutation-equivariance inherent to Regret-

Former contributes to its success, the enhanced expressivity afforded by attention

layers is likely the primary driver of its outperformance. Furthermore, both Regret-
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(a) (b) (c) (d)

Figure 2: Allocation probabilities in 1x2: (a, b) RegretNet; (c, d) RegretFormer

Net and RegretFormer are shown to approximate the optimal allocation probabilities

in the 1× 2 setting effectively (Fig. 2).

Table 2 examines the precision of my approach in maintaining the pre-specified

regret budget, which is central to the modified objective introduced earlier. Through

this analysis, I demonstrate that the ratio of estimated normalized total regret to

the specified regret budget approaches the ideal value of 1 during training. Still, a

validation phase that involves more precise regret estimation reveals some deviations,

suggesting that increasing the number of optimization steps during training could

further refine the approach, despite the trade-off in training duration.

Mediated Multi-Agent Reinforcement Learning

Markov Games and Sequential Social Dilemmas

The next part of my thesis delves into the framework of Markov Games as a pivotal

structure for understanding interactions within Multi-Agent Reinforcement Learning

(MARL) environments. Markov Games, essentially an extension of the single-agent

Markov Decision Process (MDP) to the multi-agent context, comprise a set of agents,

each equipped with its own reward function. These games encapsulate scenarios

where agents, based on the current state of the MDP, make simultaneous decisions

according to their policies. The collective actions of all agents then guide the

transition of the underlying MDP to a new state, reflecting the interconnected impact

of each agent’s decisions.

A critical aspect of learning dynamics in Markov Games is their convergence

towards joint policies that represent some equilibria (typically, subgame perfect

equilibria, also known as Markov perfect equilibria Maskin and Tirole (2001)). In an
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equilibrium, no agent can unilaterally change its strategy to benefit itself, thereby

ensuring stability within the game’s strategic landscape.

Furthermore, my research focuses on a particular subset of Markov Games known

as Sequential Social Dilemmas (SSDs). SSDs are characterized by inherent conflicts

of interest among agents, which, if not navigated carefully, lead to socially suboptimal

outcomes. These dilemmas highlight the tension between individual incentives and

the collective good, often resulting in scenarios where the pursuit of personal rewards

undermines the potential for achieving the best possible outcome for the group as a

whole and each individual within.

Mediators

A mediator acts as an additional entity within the game that represents a subset of

agents called coalition by acting on their behalf. This representation is contingent

upon the agents’ voluntary commitment, allowing for a dynamic that respects agents’

autonomy—agents can choose to engage with the mediator or act independently.

Mediator’s strategy is defined for any possible coalition. Contrary to the fixed-

strategy approach traditionally associated with mediators Monderer and Tennenholtz

(2009), my adaptation involves treating the mediator with RL in parallel with the

other agents in the environment. This dynamic iteration gives rise to what I term

Markov mediators. In my implementation, the Markov mediator observes the same

information as the agents in the coalition and acts for them to maximize their

aggregate reward. This definition encapsulates the mediator’s ability to observe

the state of the game from the perspective of its coalition and act in a manner

that enhances collective outcomes, essentially guiding the group towards socially

beneficial equilibria. The agents periodically decide whether to commit to entering

the coalition or act independently, thus preserving the agents’ autonomy.

A mediator’s policy that incentivizes all agents to commit and prevents unilateral

beneficial deviations is called a mediated equilibrium. It serves as an alternative

solution concept to subgame-perfect or Nash equilibria.

Deep Mediated MARL

Both the agents and the mediator are trained via Actor-Critic frameworks. The

actor represents the policy, whereas the critic represents an approximation of the
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Figure 3: Schematic illustration of the architectures of the actor (left) and the critic

(right) of the agents

Figure 4: Schematic illustration of the architectures of the actor (left) and the critic

(right) of the mediator

value function. Both actor and critic can be parameterized with neural networks.

The architectures are illustrated in Figures 3 and 4. The notation is as follows: oi

denotes an observation of agent i (which is a function of the state of the MDP), πi

denotes a policy for agent i, C denotes the coalition, Vi denotes an approximation of

the value function of agent i, and θ and ϕ denote neural network parameters.

A naive approach to training the mediator is to maximize social welfare for its

coalition, disregarding individual agents’ incentives. This approach, while focused

on collective good, does not inherently motivate agents to commit, as it may not

align with their self-interests. Recognizing this, I introduce two constraints to

align the mediator’s objectives with individual agents’ motivations. Firstly, the

Incentive-Compatibility (IC) Constraint ensures agents benefit from joining the

coalition, receiving at least as much payoff as they would independently. Secondly,

the Encouragement (E) Constraint prevents non-committing agents from exploiting

the mediator, ensuring their payoff does not exceed what they would receive if they

had committed. To integrate these constraints and effectively train the mediator, I

employ the method of Lagrange multipliers within the policy gradient framework.

Experiments

In one of the pivotal experiments of my study, I explore the phenomenon of free-

riding in multi-agent games, a situation where some agents exploit the cooperative
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Table 3: Results in one-step Public Good Game; c and m denote contribute and

commit actions, |C| denotes coalition size, π̃ and π̃M denote the averaged policies of

the agents and the mediator.

(∗) no mediator (†) naive mediator (‡) constrained mediator

PGG N = 3 N = 10 N = 25

reward(∗) 0.012 0.0 0.0

reward(†) 0.652 0.005 0.014

π̃(m)(†) 0.658 0.159 0.121

π̃M(c)(†) 0.985 0.001 0.02

πM(c | |C| = 2)(†) 0.993 - -

πM(c | |C| = 3)(†) 0.999 - -

reward(‡) 0.891 0.827 0.817

π̃(m)(‡) 0.916 0.961 0.933

π̃M(c)(‡) 0.959 0.858 0.817

πM(c | |C| = 2)(‡) 0.774 - -

πM(c | |C| = 3)(‡) 0.996 - -

efforts of others for personal gain. This challenge becomes particularly evident in

environments with more than two agents, where the introduction of a mediator

could inadvertently enable free-riding, thereby undermining collective welfare. To

illustrate this, I utilize the Public Goods Game (PGG) as a testbed, contrasting the

outcomes with a Naive mediator against those with a mediator that enforces the

Encouragement (E) constraint – referred to as the Constrained mediator.

In the PGG, each of N agents possesses a unit of utility they can choose to

contribute to a public good or withhold (defect). The total contribution is amplified

by a factor n greater than one but less than N , then evenly redistributed among all

agents, creating incentives to defect.

The experiment’s results clearly demonstrate the dynamics at play (Table 3).

For a game with N = 3 agents and an amplification factor of n = 2, different

mediator strategies lead to distinct outcomes. Without any mediator, agents default

to defecting. A Naive mediator manages to encourage cooperation between two

agents, yet this opens the door for the third agent to free-ride on their contribution.

In contrast, the Constrained mediator successfully guides the game towards a socially
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optimal equilibrium by encouraging a balanced mix of cooperation and defection,

effectively addressing the free-riding issue through a policy that adapts to agent

behavior to prevent exploitation.

The results are consistent even as the number of agents increases, with the

Constrained mediator consistently fostering cooperation across all agents by learning

a policy that reciprocally adjusts to punish or deter free-riding behavior. This

experiment highlights the Constrained mediator’s capability to navigate the complex-

ities of multi-agent cooperation, promoting an equilibrium that balances individual

incentives with collective welfare.

The main text also contains experiments with a sequential modification of PGG,

where agents’ endowments are preserved throughout rounds, and the public good

may grow exponentially if agents cooperate. This allows to validate scalability of the

proposed approach.

Personalized RL with a Budget of Policies

Represented Markov Decision Processes

Represented Markov Decision Processes (r-MDPs) are introduced in my study

as an extension of standard MDPs to facilitate personalized machine learning

solutions, particularly in contexts where regulatory constraints and the neces-

sity for personalized decision-making intersect. An r-MDP is defined as a tuple

Mr = (S,A, T , T0, γ,N,K, (ri)i∈N), incorporating elements from standard signle-

agent MDPs such as states S, actions A, transition dynamics T , initial state distri-

bution T0, and discount factor γ. Additionally, it introduces N as the set of agents

with n members, K as the set of representative policies limited by a budget k, and

ri, the individual reward function for each agent i.

In the r-MDP framework, agents do not engage directly with the environment.

Instead, each agent is associated with a representative from the set K, who acts

on their behalf. This model employs a dual objective: to optimally assign agents

to representatives (αi) and to train these representatives’ policies (πj) to maximize

the overall utilitarian social welfare. The challenge lies in maximizing the expected

cumulative rewards for all agents through their representative policies, taking into

account the probability of each agent being represented by a given representative.
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The novelty of r-MDPs stems from their focus on abstracting the direct inter-

action between agents and the environment, distinguishing between the ”actors”

(representatives) in the environment and the agents themselves. Representatives

serve the purpose of maximizing the welfare of the agents they represent, without

having intrinsic reward functions. This abstraction allows for a focused approach

to maximizing social welfare under the constraints of policy budgets and regulatory

considerations.

Note that the MDP remains single-agent, and each representative effectively acts

in its own copy of the MDP with identical dynamics but distinct reward functions.

My approach to solving r-MDPs

My methodology for solving r-MDPs addresses the curse of dimensionality posed by

the exponential growth of potential assignments as the number of agents increases.

Direct optimization of the joint assignment requires searching over a set with cardi-

nality proportional to Kn, which quickly becomes infeasible with large n, due to the

sheer scale of possible combinations.

To manage this, my approach involves breaking down the problem into more

manageable components. Initially, I consider a scenario where the policies of repre-

sentatives, πj, are fixed. Under this condition, the task of maximizing social welfare

simplifies to assigning each agent i to the representative j∗ that yields the highest

expected welfare.

Another angle of simplification assumes that the assignments αi are set and

focuses on optimizing the representatives’ policies. In this scenario, enhancing social

welfare equates to solving a series of MDPs, each tailored to a specific representative.

This approach transforms the overarching optimization challenge into a collection of

individual problems, each concentrated on optimizing the policy for one representative

at a time.

Combining these simplifications leads to a factorized approach, where the optimiza-

tion of agent assignments and representative policies are conducted independently yet

iteratively – each assignment phase is optimized based on the current set of policies,

and then policies are refined given the latest assignments. This methodology aims

to iteratively approximate the optimal solution to the joint objective of maximizing

social welfare, navigating the complexities of r-MDPs with a strategic division of the
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optimization process into more tractable sub-tasks.

As a specific implementation of the factorized approach, I introduce an algo-

rithm that draws inspiration from the principles of the K-means and Expectation-

Maximization (EM) clustering algorithms. This EM-like algorithm is specifically

tailored to navigate the optimization landscape of r-MDPs. The algorithm operates

through a cyclical process consisting of two main phases: the Expectation (E-step)

and Maximization (M-step).

During the E-step, akin to assigning points to clusters in clustering algorithms,

agents are allocated to representatives based on current policy performance. This

assignment process is facilitated by an n×k table, Q̃, which stores approximations of

the Q-values for each agent-representative pair. Agents are then greedily reassigned

to their optimal representatives, determined by the highest Q-value approximation

in Q̃, thus optimizing their expected utility from the current policy landscape.

Following the reassignment of agents, the M-step focuses on refining the repre-

sentatives’ policies to improve performance based on the new assignments. This

policy update is conducted using Proximal Policy Optimization (PPO, Schulman

et al. (2017)), ensuring that representatives’ strategies evolve to better serve the

collective welfare of the agents they represent.

Mirroring the iterative refinement process of K-means, this EM-like algorithm

is designed to converge to a local optimum of utilitarian social welfare within the

r-MDP framework. This convergence is not just an empirical observation but is also

formally established as a theorem.

Additionally, I propose a modification of the EM-like algorithm that relaxes the

greedy agent reassignment during the E-step.

Experiments

To validate the effectiveness of the proposed algorithms under complex conditions, I

conducted experiments within the MuJoCo simulation environments – specifically,

HalfCheetah, Ant, Hopper, and Walker2d. These environments involve the control

of robots using continuous actions within high-dimensional state spaces.

To frame these environments within the r-MDP context, I introduced n = 100

agents, each being assigned a uniformly sampled target velocity. The agents’ rewards

were then determined based on how closely the robot’s velocity matched their assigned
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(a) Ant (b) HalfCheetah (c) Hopper (d) Walker2d

Figure 5: Social welfare achieved by ours (EM, end-to-end) and baseline algorithms

in MuJoCo environments

target velocity at each time step, introducing a personalized aspect to the challenge

that each agent faces within the common single-agent environment.

The experiments explored various policy budgets, k, including 1, 2, 5, 10, and 50,

to understand the impact of policy constraints on our ability to effectively personalize

the agents’ experiences and outcomes within these complex simulations.

The results, presented in Figure 5, highlight the superior performance of my

algorithms – both the EM-like algorithm presented above and its end-to-end variation –

over existing clustering approaches from the personalization literature (Hassouni et al.,

2018) across different policy budgets. Notably, both algorithms not only significantly

surpassed the random assignments but also consistently outperformed the clustering

baseline in nearly all environments and settings tested. The exception was within

the Ant environment, where the clustering baseline showed competitive performance,

indicating a particular interaction between the environment’s complexity and the

baseline’s method of personalization.

These findings underscore the robustness and adaptability of the proposed al-

gorithms, demonstrating their potential to achieve meaningful personalization in

machine learning applications, even under the stringent conditions posed by complex,

high-dimensional tasks and limited policy budgets.

Conclusion

This thesis bridges the realms of game theory and AI, demonstrating through three

distinct studies how deep learning and reinforcement learning can be harnessed to

address and solve complex problems within the intersection of these fields. Each
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paper contributes to our understanding and capabilities in designing AI systems that

can effectively navigate and optimize within multi-agent game-theoretic frameworks.

The first study introduces RegretFormer, a novel deep learning architecture

for optimal auction design that surpasses existing methods. By rethinking the

objective formulation of RegretNet, this work not only advances the state-of-the-art

in automated auction design but also simplifies the optimization process, reducing

the burden of hyperparameter tuning and suggesting validation procedures that

could benefit future research in regret-based optimization.

The second study challenges conventional perspectives on cooperation in multi-

agent reinforcement learning environments, advocating for the integration of medi-

ators to achieve equilibrium-driven cooperation. By adapting the game-theoretic

concept of mediators to the context of Markov games, this study explores conditional

cooperation beyond simple cooperative dynamics, introducing a constrained opti-

mization approach that enhances both social and individual welfare. The potential

applications of mediators in MARL are vast, and this research opens multiple avenues

for future exploration, from applying mediators in more complex environments to

combining them with cryptographic technologies for decentralized execution.

In the third study, the focus shifts to the challenge of personalizing AI solutions

within regulatory constraints through the concept of represented Markov Decision

Processes. The development and validation of two deep reinforcement learning

algorithms demonstrate the feasibility of achieving personalization under policy

budget constraints, highlighting the potential for these approaches to be extended to

real-world applications. Moreover, the game-theoretic view of the problem as social

welfare optimization lays the groundwork for follow-up studies. For example, exten-

sions could incorporate fairness and outside options into personalized reinforcement

learning, aiming to ensure that personalization enhances, rather than compromises,

both equity and social welfare.

Collectively, these studies underscore the synergistic potential of combining

game theory with artificial intelligence to create multi-agent systems that are not

only intelligent and adaptive but also robust to manipulations, equitable, and

prosocial. From fostering cooperation in MARL to personalizing solutions in high-

stakes domains, this thesis exemplifies how game-theoretic principles can guide and

enhance AI research, offering a roadmap for future investigations at the intersection

of these two pivotal fields. Moreover, the study on automated auction design
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exemplifies the application of AI to enrich a fundamentally game-theoretic problem,

demonstrating the transformative impact of deep learning on nontrivial practical

applications.
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